LiFePO4 Cell Configurations 12V, 24V & 48V This deck shows the most common configurations for using LiFePO4 Cells to build 12V, 24V and 48V batteries. #### Series-Only (1P) Configurations 12V, 24V & 48V #### **2P Wiring for 12V batteries** Voltage = 4 times cell voltage = Nominal 12V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh= Voltage X Battery Ah = 12V x (2 x Cell Ah) = 24 x Cell Ah #### **2P Wiring for 24V Batteries** Voltage = 8 times cell voltage = Nominal 24V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh= 24V x (2 x Cell Ah) = 48 x Cell Ah (Series-First) **Note:** As shown on the Series only (1P) layouts, each of these can have Alternate physical layouts that could optimize the footprint to the needs. #### **2P Wiring for 48V Batteries** Voltage = 16 times cell voltage = Nominal 48V for LiFePO4 Ah= 2X Cell Ah (assuming balanced Cells) Wh = 48 X (2 x Cell Ah) = 96 x Cell Ah **Note:** As shown on the Series only (1P) layouts, each of these can have Alternate physical layouts that could optimize the footprint to the needs. ### Series first vs parallel first There is a lot of debate about whether series-first or parallel-first is best. The fact is, both of them are used successfully by many people. The 'correct' choice comes down to the particular situation and the designer's preference. | Parallel-First | | Series-First | | | |--|--|--|---|--| | Pro | Con | Pro | Con | | | Simplicity of a single BMS (Fewer corner cases, less electronics that can go bad) (possibly) Lower Price of the single BMS The BMS balances everything | Must use higher current BMS Only 'groups' of cells are managed and monitored With only one bank there is no fall back redundancy | Each cell is monitored and managed separately. If one bank goes out, you still have the other bank You can use lower current BMSs to build up a High current solution. | Complexity of two BMS and making sure the corner cases are covered. Doubling the BMSs can increase cost Doubling the BMSs doubles the circuitry that can go bad. The multiple BMSs don't balance between the two banks | | #### Note About Weight LiFePO4 cells are considerably lighter than any form of Lead-Acid, but as the cell count goes up the battery can still get very heavy. Example. the EVE 280AH cells weight in at 5.2 Kg (11.5 LBS) each cell 8 cells = 41.2Kg (93 Lbs) 16 cells = 82.4Kg (184 LBS) Add the weight of Box and bits it becomes unwieldy quickly. #### Series first vs parallel first – Personal Preference Warning: The following is the authors personal preference. There is no right or wrong I do builds both ways, but I prefer Parallel first. - I believe that if you start out with good matched cells, the likelihood of one cell drifting way out from the others is very low so I don't feel a need for monitoring individual cells. - I am a strong believer in simplicity - In most of my builds, having half capacity does not help much. When I do series first it is usually because the BMS available will not handle the current for a parallel-first configuration. Other folks on the forum *strongly* believe Serial-First is the only way to go. Each designer must decide based on their situation and priorities #### **Document Revision History** Revision 1 - Original Revision 2 - Added comments about alternate physical layouts Revision 3 - Added note about weight of large configurations. Revision 4 - Added Wh (Watt Hour) Calculations. ## Oversized Bus-bar Factory Bus-bar #### **Bonus: Possible 12V 4P4S Fortune Cell Layouts**